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Necessary and sufficient conditions are obtained for the stability of the equilib- 

rium of Hamiltonian systems in the presence of resonances. 

1. Formulation of the problem. The equilibrium of the Hamiltonian sys- 

tem % 
LH(s,y), d$== 

dt = ay, 
-&H(s,y) (x=1,2 ,.*., n) (1.1) 

J 
is investigated. 

Without limiting the generality, we shall consider the origin z = (x1, . . . , s,) = 0, 

Y = bl, ..*, y,) = 0 to be the equilibrium position. In this case the Hamiltonian 
function can be represented as follows: 

H (z, y) = Ha (2, Y) + H, (I, Y) + . . . (i-2) 

Here Hi (x, y) is a homogeneous polynomial of degree k. 
The question of stability is examined for the case when it is not solved in a linear 

approximation. In other words it is assumed that: 

a) The quadratic form Hz (5, y) in (1.2) is indefinite (otherwise stability would 

follow from the Lagrange-Dirichlet theorem) ; 
b) The eigenvalues of the linearized system are pure imaginaries (otherwise insta- 

bility is assured by the Liapunov theorem). 
Moreover, we shall assume that 

c) There are no multiple eigenvalues among those pr, pa, . . . . Pn, -PI, -&, 

. . . , -fin of the linearized system. 
Under the assumptions listed,it can be considered that the quadratic form Hs cz, J/) 

in (1.2) is written as 

Ha (~9 Y) = + i Pcl (r% + ox”) (i-3) 

Some integral relationships between the frequencies of the linearized system, the 
resonance relationships, play an important part in questions of stability. 

Dsfinltion. It is said that the system (1.2) possesses resonance if there exists the 

integer vector 
Ii = (k,, k,, . . . . L) # 0, Ic, 2 0 

such that 
k,p, 4 k,B, + . . . + k,Bn = 0 

Thenumber 1 k 1 = k, + k, + . . . + k, is called the order of resonance. As is 

known [l, 21, in the absence of resonance in the system it is stable in any finite order ; 
instability can result only in the presence of resonance. 

The paper is devoted to an investigation of the stability of the equilibrium of Hamil- 
tonian systems which are neutral ( i.e. Conditions (a),(b) and (c) are satisfied) in a linear 
approximation, in the presence of resonances. All the investigations are carried out 
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herein in two stages. 

1. The investigation of truncated systems which results in the theorem: Necessary 

and sufficient for the Liapunov stability of a truncated system is the presence of an 
“invariant ray” among the solutions of this system, which would be the analog of the 

eigenfunction in the nonlinear situation. 

2. Carrying the results on the stability of the truncated (model) system over for the 
original system (1.1). 

Theorem 1.1. If there is an invariant ray among the solutions of the model sys- 
tem , then the system is Liapunov unstable, otherwise there is Birkhoff stability in any 
finite order. 

Results of the analysis presented here confirm A. M. Molchanov’s hypothesis formulated 

in his doctoral thesis, although it referred to a nonresonant situation and to non-Hamil- 
tonian systems. 

Molchanov hypothesis. Necessary and sufficient for the instability of a system 
is the presence of an invariant ray in the model system. 

9. Third rnd fourth order rasonrncer, 1’. Let the system(l.l) possess 
a third order resonance. The Hamiltonian (1.2) of the system (1.1) can be reduced to 

normal third order form by polynomial canonical transformations. Discarding terms 
above third order, the Hamiltonian of the truncated system is written as follows in polar 
canonical variables : 

r= i ~4a+2A1/7%cos41 (2.1) 
a=1 

klP1 +k,P, + - - - + k,$,, = 0, pk = plkrp2k*...p:~, lkl= 3 

9 = k,cp, + k,cp, + - - - + kncp,, a = I, 2,. . ., n 

Here pa and cp, are canonical polar coordinates, k. is an integral vector, up is the reso- 

nance phase. The system of equations corresponding to (2.1) is 

dQL7 
dt= - 2Ak, fl sin 1c, (a = 1,. . ., n) (2.2) 

dll, * k,a 
dt= -A@r, --pos$ 

a=1 01 

We call the system (2.2) the model third order system. If A # 0, it is then said the 
resonance is included. It can be verified that the system (2.2) possesses the growing 

solution 
pa (t) = k,b (t) (a=i,..., n) 

n IAl db 
q(t) =const = -2A ,F=21Aj)/~b’/~ 

We call the solution (2.3) the invariant ray of the model system (2.2). 

(2.3) 

The presence 

of the ray denotes the instability of (2.2). Thus, the theorem is proved. 
Theorem 2.1. If the system (1.1) possesses one included resonance, it is then 

Birkhoff unstable in the third order. 
2’. Now let the system (1.1) possess one resonance, and let its order be four. The 

Hamiltonian (1.2) can be reduced to normal form by a canonical, polynomial transfor- 
mation. Discarding terms above fourth order, we obtain the model fourth order system 
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(k& + . . .A\ “,P, = 0, kl -i-a . .+k, = 4) 

Theorem 2. 2. Satisfaction of the condition 

(2.4) 

(2.5) 

is a sufficient condition for stability of (2.5). 

Proof. The system (2.5) possesses the following integrals: 

I 
k, 

CL = pm -Tpl fa=2,3 ,..., n), F=r-- i &P~ 
Or==1 

(2.7) 

From these integrals let us construct a non-negative integral of the system 

L= i Ii$F? 

a=2 
(2.3) 

which is a Liapunov function if it is positive definite, i. e. L = 0, only for p - 0. On the 

Invariant surface I,” + .-. 4 In4 = 0, which is described by the equations ‘9, =t k,b (t) 

the integral F becomes 

F = [2A v cos J1$ A=f+k,kp] bt 

Upon compliance with condition (2.6). the integral F vanishes only for p _-_ O-There- 
fore L is positive definite. The theorem is proved. 

Rem~kably, it turns out that condition (2.6) is also a necessary condition for stability. 

Theorem 2. 3. The equilibrium of the system (2.5) is unstable if the condition 

is satisfied. IA I>S (2.9) 

Proof. Let us construct a growing solution of the system (2.5) which we shall seek 
in the form of an invariant ray 

P, (Q = k,b 01 (a = 1, ..*, n), J! (t) -_ const, (2.10) 

If such a solution exists, then thereon 

F -_ [2A J@. cos II) + AuPk,kpl bZ 

Upon compliance with condition (2.9) a $,,can be selected such that 

cos~o=- 
AXa /& 

2.4 c/LX ’ 
Asin$o<O 

Hence dJ! / dt = 0 and $ = q. = const. The equation for b (t) becomes 

d& / dt z [(2A l/F,’ - ( .4”Pk,ka)~]‘lrb” (2.11) 
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The instability of (2.5) under the condition (2.8) ( l ) follows from the presence of the 

growing solution (2.9), (2.10). The boundary case of stability I A 1 = S is examined in 
the supplement. 

3. Invariant rry and Liopunov lnrtrbilfty, 
Theorem 3.1. If the system (1.1) possesses one resonance and among the solu- 

tionsofitsmodelsystem([k 1 = 3or Ik 1 = 4) h t ere is an invariant ray, then the 

equilibrium of (1.1) is Liapunov unstable. 
This theorem will be proved by using the known Chetaev algorithm. A function 

P (p, cp) will be constructed such that the time derivative in its domain of nonpositivity 
(P (p, cp) < 0) taken by virtue of the original system, is negative. Liapunovinstability 

for (1.1) follows from the presence of the Chetaev function. 
Pro o f. By a canonical polynomial transformation we reduce (1.2) to 

(3.1) 

a=1 
Here 1 = (Z1, . . . . I,,) is the integral vector 1, > 0, 1 11 = I, + . . . + i,, 2 < I 11 < 1 k 1, 

the degree of R (P. ~1) in the variable p is greater than I k I. 

Q(P* $I) = 
2A T/&OS 9 (1) I= 3) 

2A I/&OS 9 + A=a p,pP 
(3.2) 

(I k:l:= 4): 

A model system of order 2 1 k I is described by the Hamiltonian 

The quantities 
rl = I’ - R (P, cp) (3.3) 

.~ * 

I iz = pa -L&p1 (a=2,...,n) F=rl- 2 PaPa 

are integrals of the model system, i. e. 

{I’,, zag = {r,, F) = 0, { 1 - Poisson brackets 

Hence, there follows 
d 1, 

I I dt 
= 1 (II,, r} I = 1 {I,, 8) I < I P vQ+“2 (3.4) 

Here lpl =h+ ... f Pnr and the symbol f (p) < pm means that the expansion of 
f (p) in terms of o contains only powers of order not less than m. 

Now, let us examine the function 
P (P, ?J)) = f; Ic;? + F’ - x?pl:’ (3.5) 

a=2 

Let us intioduce the following notation for the domains: 

*) An analogous result has been obtained in [3] for systems with two degrees of freedom. 
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In this notation 

It follows from (3. ‘7) that 
(3.9) 

(3.20) 

is satisfied everywhere in 9,. If we consider (3.9) in 8, for pi - 0, then for 1 k I >, S 
we obtain 

P, = +- Pl11 + 0 (IN 
(3.11) 

As p1 - 0 the inequality (3.4) in 8, goes over into 

1% 
I I lit = 0 (p!‘) (3.12) 

Let us now show that Q (r) separates into the sum of two closed domains 

Q, (r) = fP (p, cp) < 0, pi < r, sin* > 03 

n, (r) = (P (p, cp) < 0, pI < r, sin* > 01 

for sufficiently small r , so that 

sz (r) = SL (r) IJ Q+ (r), t2+ (r)_n Q_ (r) = {P = 0) 

To do this it is sufficient to show that sin+ # 0 in P (r) for sufficiently small r. kt 
us assume the opposite and arrive at a contradiction. Thus, let sin9 = 0 for arbitrarily 
small r. 

We carry out the subsequent reasoning separately for 1 k 1 = 3 and 1 k 1 = 4. 
The case 1 k ) = 3, A # 0. 
under the assumption made, it follows from (3.8) 

4Asp’r’ g xspi 

Let us consider (3.12) in 62, for pl - 0, we obtain 

(3.13) 

4Az +$i- PP [i + 0 (q1.G x*Pl* (3.14) 

Selecting x2 = 2dzkk / ha,_ we see that (3.131 is not satisfied for small enough r. 

Thecase lkl=4, 2AI/~-lAafik,kpI=6~ 

Under the assumption made, there results from (3.8) 

1 f 2A l/px + AaPp,pp I< XPl’ (3.15) 

Let us find the lower bound of the left side of (3.15) 

1 f 2A VF + AaPp,pp I> 12 I A I f& k’~,~~i t (3.16) 

Substituting into (3.15). we obtain 

121AI~p’C-1A~P~=~p11<x~12 (3.17) 

Considering (3.17) in Q, for pi - 0 and taking account of (3.10) we see that 

ki2 [ ( 2 1 A I ]/F - 1 AaPk,kp I+ o (1) 1 pi* = k;” [6’ + 0 (4)l PI’ < XPl’ 

is not satisfied for small enough r if we select 
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Now, let us examine the derivative 

(3.18) 

+ 2F CF, rl’j + 2F {F, R$ -x2 1 k 1 pdWl~pl, r) 

Let LLS estimate the order of magnitude of the quantities in the right side of (3.18) in 9, 

for PI - 0 ( I, (I,, Rflj = o (pl’/’ I”), 1 F {F, rlj 1 = 0 (pt’z’k’-“z) 

{PI, q pJf+1 Y pl’/’ Jk’-1 (3.19) 

Taking account of (3.18). (3.19) in 8, for PI - 0, we can rewrite (3.18) as follows : 

dp / dt = 2Gklj k 1 ply2 lkN A sin 11 [l + 0 (I)] (3.20) 

It hence follows that dP / dt < 0 is one of the domains Q, (r) or c_ (r) where .4 sing < 
< 0 for sufficiently small r. Hence dP / dt = 0 only when ‘P = 0. 

Thus, the function 

P (p, $I) = i Za2 + F.2 - ~~pl’~l 
a=2 

x2 = 

1 

2A’kk j kl= (I k I = 3) 
l/d 62 / k? (Ikl =4) 

is the Chetaev function of the system under consideration. The theorem is proved. 

Theorem 3. 2. If the system (1.1) possesses one resonance and its order is four 

(IAI<S) h fr ,t en om the stability of the system in the fourth order (I k I = 4) followj 

the Birkhoff stability of (1.1) in any order. 
The construction of Liapunov function of a model system of arbitrary order is complcte- 

ly analogous to the construction in Sect. 2. 

Theorem 3. 3. If besides resonance of order p (p ,( 4) , the system (1.1) con- 
tains resonances of higher orders, then Theorem 3.1 remains valid. 

The proof of this theorem is completely analogous to the proof of Theorem 3.1. In 
this case the Chetaev function is constructed as follows: 

P (p, 9) = i Iazs + Pa”’ - PP 

CC=2 

for 1 k 1 = 3. 
For fourth order resonance 

P (p, lJl) = 5 zo2s i_ F? -x+4 
a=2 

4f3 < s < 2. x r If:: 62 / kl? 

4. Higher order re#onrnce# (I J.T I > 5). If the order of the single reso- 
nance in the system is p > 5, then the Hamiltonian of the model system of this order 
is written as 

+ 4~’ + 
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Here 1 = (Jr, . . . . 2,) is an integral vector and 

E,>O jZ/=E,3_ *+* + I,,, y = IP - ‘isI, 2 < I1 i < y; p = / k I 

r (o 3) _ pwhw (14 = 277J+1, m>2) 
I’ 6 3 

- ‘I 2A@ cos I# + A#’ (Ikl=2m, ~Z~=m,m>2) 
(4.2) 

h-l& + -** -I- &pn = 0 
Here k = (k,, +..,.&,) is the resonance vector. It is easy to verify that the conditions 

A JCL = 0, 12 1 = 2, 3, **., y (4.3) 

are necessary conditions for instability. Not satisfying at least one of the conditions 

(4.3) is a sufficient condition for the stability of (1.1) to any finite order ( *). If condi- 

tions (4.3) are satisfied. then the question of stability is solved in complete analogy with 
lower order resonances. Thus, included odd order resonance always results in Liapunov 

instability upon compliance with the condition 

Otherwise, the stability is in any finite order. 

The proofs of these assertions are completely analogous to the proofs of the preceding 
Sections. 

The results of the preceding Sections can be formulated in the form of the following 

theorem. 

Fundamental theorem. If the system (1.1) is neutral in a linear approximation 

and possesses one resonance f 1 k 1 = p), then the presence of an invariant ray among 
the solutions of the model system of order p is a necessary and sufficient condition for 
the Liapunov instability of (1.1). Otherwise (if there is no ray), there is Birkhoff stability 

in any finite order. 

Supplement. Boundary case of stability. Let us examine the boundary 

case of stability in an example of fourth order resonance since all the reasoning carries 

over to the case of arbitrary even order resonance. 

Thus, the system possesses one fourth order resonance 

(S. 1) 

and the Hamiltonian of the model fourth order system 

(S. 2) 

Condition (S. 2) corresponds to the boundary case of stability. Let us first note that in 
this case p = 0 is not an isolated stationary point. In fact, the invariant ray consists 
completely of fixed points in this case. It is hence natural to expect that the question 

of the stability of the equilibrium of (1.1) is not solved in the fourth order, but depends 
essentially on the higher members. Such is the situation. To illustrate this, let us present 

*) For j 11 = 2 .this condition follows from [4]. 
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an example of a system unstable in the fourth order but stable in the eighth. 
Let us consider a system with the Hamiltonian 

r = r1+ l?z 

rl=pr-3pz+ 2 fi I/~ecs’# $21’1’ 

rz = 2prap, ~0s 2+ + pt 

(S.3) 

The Hamiltonian r1 describes a model fourth order system. Let us select the initial data 
in this system such that the value of the integral 1 = ol - 3p, would be negative (t < O), 
and such that the integral of the system 

F=2 fi ~cos~+fP1~It=a=6 

This can be done upon compliance with condition (s. 2). We obtain the equation for, p1 
as dpl / dt = 6 1/?%- 1 I 1’12 pl”” 

Instability of the system (S. 3) in the fourth order hence follows. 
Let us show now that the equilibrium of (S. 3) is stable. Let us construct the nonnega- 

tive integral 
L=z4+.@,G=r-z 

where G becomes on the invariant surface pr = 3p, 

G = [i8 (1 + cos$) + (54 ecs 2’$ + 81) P?] Pz2 

Thus L = 0 only for p1 = pz = 0 , and is thereby a Liapunov function. The exist- 

ence of systems unstable in higher orders than the fourth is evident in this case. 

The author is grateful to A. M. Molchanov. V. V. Rumiantsev and A. D. Briuno for 
useful discussions. 
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